

Enhancement of leather waste gelatin resin with

Azanza garckeana fruit extract

Student: Notabo Hlabano

Introduction

- Waste production in the leather industry [1-3].
- Waste produced is disposed of together with valuable components (e.g. 11.3% collagen) [1-3].
- Types of waste produced from processing a ton of raw hides (e.g. 35.5% Chrome Tanned Leather Solid Waste CTLS, 39.5% untanned solid waste) [3].(only 25% useable hide)
- Harmful effects of disposing CTLS [2].
- Approximately 2 688 tons of solid waste produced per year, globally, and only 19% of the waste is converted into useful products [3].
- Need for an alternative method to recover and fully utilize the remaining 81% of waste.
- Gelatin resin can be produced from CTLS [4].
- Gelatin resin with some modifications can be used in industrial applications [1-3].

Background

Fig 1: Tannery processes and products produced during the processing of a ton of raw hides [1, 3, 7]

Research question

How can the use of polyphenolic compounds from Azanza garckeana (A. garckeana) enhance the physicochemical properties of dechromed leather waste gelatin?

Proposed work plan

Progress made

- Full registration
 - Process follows initial registration
 - Assessed and then approved by academic board
- Preparation for Experimentation
 - Trained in using the HPLC and GC
 - Collected chrome tanned leather shavings
 - Collected and dried Azanza garckeana

Results so far attained

Initial assessment of tanneries to ascertain the disposal of chrome tanned leather solid waste -

conducted. – paper underway

• Received training on use of HPLC and GC

Remaining work

<u> </u>	<u>, v v '</u>		<u> 1 🗸 .</u>					_	_											-					
Year	2018						2019					I							2020						
Tasks	Dec	Jan	Feb	Mar	Apr	May	Jun	Įų	Ang	Sep	Oct	Nog	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Ang	Sep	Oct	Nov	Dec
Working on review of literature																									
Submit literature- Chapter 2																									
Submission of progress report												ĺ													
Methodology outline												į													
Pre-treatment of raw materials	NUST	7										i													
Characterisation of raw materials		NUS	ST									I													
Preparation of gelatin			NUS	T								i													
Methodology write-up																									
Submit methodology- Chapter 3												i													
Submission of progress report												į													
Training on test equipment					CPU'	T						l	\Box												
Characterisation of gelatin						N	NUST	& CI	PUT																
Testing gelatin on substrates										NUS	T		_												
Submission of progress report																									
Analysis of results																	_								
Write -up of results																									
Finalising write up of thesis												i	\Box												
Submission of thesis																									
Submission of progress report												ĺ	[

Remaining work

Resources

- Financial Resources
 - Purchase of laboratory-size grinder, portable gelatin reactor, whatman or mechanical bag filter, fine sieve (1mm pore size) and a portable pH meter NUST
 - Funding from COMESA/ALLPI
- Infrastructural Resources
 - Experimentation at Cape Peninsula University of Technology in South Africa
 - Differential Scanning Calorimetry (DSC)
 - Scanning Electron Microscopy (SEM)
 - Texture Analyser
 - Rheometer

Methodology

Preparation of raw materials

- Collection, grinding and pretreatment of Chrome Tanned Leather Solid waste (CTLS)
- Alkaline hydrolysis of CTLS to eliminate Chromium ions and inorganic salts
- Collection, drying and grinding of Azanza garckeana fruit
- Extraction of polyphenolic compounds from Azanza garckeana using soxhlet solvent extraction method

Characterisation of raw materials

- Determination of residual chromium, pH, ash content and collagen yield in CTLS
- Determination of polyphenols present in Azanza garckeana

Synthesis of a polyphenol cross-linked gelatin resin

03

02

Characterisation

Table 3: Characterisation of gelatin resin

Technique	Property and Method
Atomic Absorption Spectroscopy (AAS)	To determine the chromium content (ASTM E363-16)
UV-Visible spectroscopy (UV-Vis)	To assess the nature and quantity of amino acid in gelatin (Sarbon et al., 2015)
High Performance Liquid Chromatography (HPLC)	To determine polyphenolic compounds found in A. garckeana fruit extract (Michael et al., 2015)
Differential Scanning Calorimetry (DSC)	To investigate thermal stability and degradation of gelatin resin (ASTM E2550-17)
Scanning Electron Microscope (SEM)	To study surface morphology, size and shape of cross-linked gelatin polymer (ASTM F2603-06)
Texture Analyser	To test the gel strength of gelatin resin (ASTM D903-98)
Rheometer	To measure viscoelasticity (ASTM D4212-99)

Characterisation (continued)

Crude gelatin yield

The yield will be calculated as the percentage of leather material converted to gelatin and will be calculated according to equation 1:

$$Yield\ (\%) = 100\ (1 - \frac{Wres}{Wshav})$$
 (1)

Where;

 W_{res} is the residual weight of gelatin after filtration and/or centrifugation, and W_{shav} is the initial weight of shavings.

• PH

To be measured using a pH meter

• Water Holding Capacity (WHC)

To measure water absorption, ASTM D5229 standard will be used.

Expected outcomes

Fig 8: Minimum property requirements of commercial gelatin resin [5]

OTHER Papers awaiting publication

- 1. Needs Assessment in Value Addition of Hides and Skins in Matabeleland ZJST
- 2. Membrane Technology in Tannery Wastewater management A REVIEW Water SA
- 3. Quantification of Solid Leather Waste and Recycling Strategies adopted by the Zimbabwe Leather Industry ZJST

References

- [1] J Kanagaraj, KC Velappan, NK Babu, and S Sadulla, "Solid wastes generation in the leather industry and its utilization for cleaner environment-A review," (2006).
- [2] AA Karim and Rajeev Bhat, "Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins," Food hydrocolloids **23** (3), 563-576 (2009).
- Jakov Buljan, Gunther Reich, and J Ludvik, "Mass balance in leather processing," United Nations industrial development Organization. Regional Programme for Pollution Control in the Tanning Industry in South-East Asia (2000).
- [4] Justyna Kucińska-Lipka, Iga Gubańska, and Helena Janik, "Gelatin-modified polyurethanes for soft tissue scaffold," The Scientific World Journal **2013** (2013).
- [5] Gelatin Handbook, "Gelatin Manufacturers of America", (January, 2012).
- Victor John Sundar, Arumugam Gnanamani, Chellappa Muralidharan, Narasiman Kannan Chandrababu, and Asit Baran Mandal, "Recovery and utilization of proteinous wastes of leather making: a review," Reviews in Environmental Science and Bio/Technology **10** (2), 151-163 (2011).
- [7] Mercedes Catalina, G Attenburrow, Jaume Cot, Anthony D Covington, and A Paula M Antunes, "Isolation and characterization of gelatin obtained from chrome-tanned shavings," (2006).

References (Continued)

- [8] Sobur Ahmed, Fatema-Tuj-Zohra, Md Shiblee Hider Khan, and Md Abul Hashem, "Chromium from tannery waste in poultry feed: A potential cradle to transport human food chain," Cogent Environmental Science **3** (1), 1312767 (2017).
- [9] Khatoon Maria, Kashif Saif-ur-Rehman, Saad Saman, Umer Zeeshan, and Rasheed Ayesha, "Extraction of Amino Acids and Proteins from Chrome Leather Waste," Journal of Waste Recycling **Vol.2** (No. 2.6) (2017).
- Anupama Pati, Rubina Chaudhary, and Saravanabhavan Subramani, "A review on management of chrome-tanned leather shavings: a holistic paradigm to combat the environmental issues," Environmental Science and Pollution Research **21** (19), 11266-11282 (2014).
- [11] Martin Chaplin, "Water structure and science," (2011).
- [12] Hazmi Yasin, Abdul Salam Babji, and Abdullah Sani Norrakiah, "Modification of chicken feet gelatin with aqueous sweet basil and lemongrass extract," LWT-Food Science and Technology 77, 72-79 (2017).
- [13] Kristen Hess, "Mechanical and Moisture Absorption Properties of Biobased Gelatin Films and Composites for Construction Applications," (2015).
- [14] Julia Calvarro, Trinidad Perez-Palacios, and Jorge Ruiz, "Modification of gelatin functionality for culinary applications by using transglutaminase," International journal of gastronomy and food science 5, 27-32 (2016).

References (Continued)

- Jennifer Biscarat, Benjamin Galea, José Sanchez, and Celine Pochat-Bohatier, "Effect of chemical cross-linking on gelatin membrane solubility with a non-toxic and non-volatile agent: Terephthalaldehyde," International journal of biological macromolecules **74**, 5-11 (2015).
- Cristina Peña, KORO De La Caba, Arantxa Eceiza, Roxana Ruseckaite, and Iñaki Mondragon, "Enhancing water repellence and mechanical properties of gelatin films by tannin addition," Bioresource technology **101** (17), 6836-6842 (2010).
- Yuanyuan Zhao, Zhaojie Li, Wenge Yang, Changhu Xue, Yuming Wang, Jun Dong, and Yong Xue, "Modification of gelatine with galla chinensis extract, a natural crosslinker," International journal of food properties **19** (4), 731-744 (2016).
- YJ Dikko, ME Khan, TA Tor-Anyiin, JV Anyam, and UA Linus, "In vitro Antimicrobial Activity of Fruit Pulp Extracts of Azanza garckeana (F. Hoffm.) Exell & Hillc. and Isolation of One of its Active Principles, Betulinic Acid," Methodology (2016).
- [19] KG Michael, LU Onyia, and SB Jidauna, "Evaluation of Phytochemicals in Azanza garckeana (Gorontula) Seed," Journal of Agriculture and Veterinary Science Volume 8, 71-74 (2015).
- Sajid Maqsood, Soottawat Benjakul, and Fereidoon Shahidi, "Emerging role of phenolic compounds as natural food additives in fish and fish products," Critical reviews in food science and nutrition **53** (2), 162-179 (2013).
- [21] Giancarlo Artoni, "Process for gelatines extraction and chromium salts recovery from tanned hides and skins shavings", (Google Patents, 2006).

The end Thank You!!!!!!!!!